
GSoC 2021 PostgreSQL Project Proposal
pgagroal: Metrics and monitoring

1. Basic Information
Name: Junduo Dong

Email: andj4cn@gmail.com

GitHub: An-DJ

Location: Jincheng, China(UTC+08:00)

2. About me
I'm Junduo Dong, a 22-year-old studying at China University of Geosciences. My major is

Software Engineering, especially focusing on spatial databases and spatial distributed computing.

I once worked as a R&D intern in the Infrastructure Group of the Data Technology Department of

Xiaomi in 2019. I am mainly responsible for the development of internal micro-service

framework and the maintenance of infrastructure such as traffic monitoring. So I have some

experience with monitoring system design and cloud-native monitoring tools such as Grafana and

Prometheus.

I am familiar with Back-end stack and programming languages such as C/C++, Java and Golang.

I have a lot of experience in the development of back-end services and the use of database

middleware, such as Hikari, ShardingSphere, etc.

In addition, I am also an open source enthusiast. I love open source projects related to distributed

systems and distributed databases and I am currently a code contributor for TiDB, a cloud native

distributed database.

3. About pgagroal
From my perspective, pgagroal is a protocol-native PostgreSQL connection pool which has

higher performance than others. Pgagroal provides an out-of-the-box connection pooling

mechanism to reduce the performance overhead caused by frequent database connection creation

and destruction. Pgagroal provides authentication and limitation mechanisms to manage database

access. The failover solution in pgagroal supports database failure recovery. Pgagroal's

administration and cli tools allow you to gracefully shutdown connection pool, remove idle

connections and other management operations locally or remotely, which makes managing it

extremely convenient. Meanwhile, pgagroal supports Transport Layer Security (TLS) V1.2 + and

PostgreSQL v3 protocol.

Pgagroal uses the process model “fork” which forks a child process to handle one connection to

PostgreSQL. The child process can be terminated or crashed when fatal errors occur or

connection closed so that the main process of pgagroal cannot be influenced. Library libev is used

in pgagroal to handle network requests caused by clients, database servers or internal modules.

Relatively speaking, pgagroal shows better performance by pgbench test

[https://agroal.github.io/pgagroal/performance.html]. More importantly, pgagroal can be better

integrated with cloud native ecology such as Prometheus and Grafana. Monitoring metrics can

assist DBAs to judge the current state of the system. A good monitor dashboard can help DBAs

troubleshoot performance bottlenecks or other exceptions in pgagroal. Prometheus support in

pgagroal can make it easier to collect metrics and visualize them in the Grafana dashboards.

The main architecture of pgagroal is shown below.

4. About GSoC

Project "Metrics and monitoring" aims to collect more effective metrics which can stand for

current status of pgagroal's pool, connections, clients, servers and internal state. Finally, the

metric data can be illustrated by one or more Grafana dashboards to show clearly what DBA

desires to know.

The monitoring points of the current system have been roughly complete, which offers a mature

framework for adding more metrics and exposed by Prometheus. We can add more appropriate

monitoring points and make practical and attractive Grafana dashboards.

5. Metrics
Pgagroal now includes metrics covering a number of areas such as the pool itself, limits of

user-database-application configured in "pgagroal_hba.conf", connection state counter and so on.

The current metrics can be roughly divided into 3 modules: "Pool", "Limit" and "Connection".

Based on my experience of monitoring systems and other implementations of connection pools, I

think the monitoring metrics of pgagroal can cover the 6 areas (modules) below:

● Pool metrics which cover the pool state, result counter, authentication and so on. Metrics

in pgagroal now include pool state, authentication counter and session distribution, but no

normal query and transaction counter which can characterize the ability of current

interactions.

● Limit metrics which cover all user-database-application-limit tuples. Metrics in pgagroal

now has totally included all limitations such as max_connections and active_connections.

● Server metrics which cover all PostgreSQL instances' state, distribution of databases and

so on. Metrics in pgagroal now just include server state and error counter, but no

distribution of current connection and query amounts in different databases. The

distribution metrics can show the hot or cold databases and give recommendations for

DBAs to split or merge databases.

● Client metrics which cover clients' state, wait time and count before being allocated

connections by pool and so on. There are no metrics about clients such as wait time and in

use amounts which can show if the limit rule or resource configuration should be adjusted

by the administrator.

● Connection metrics which cover all connections' state, result counter and so on. Metrics

in pgagroal now include enough counters to show history and current connection state

such as success return, error termination and timeout return etc.

● Internal metrics which cover resources which are in use such as network traffic, memory

and socket. There are no metrics referring to internal resource information which can

characterize the physical resource occupancy of pgagroal.

Combined with the above analysis, the more complete monitoring modules and details of

pgagroal are as follows ('E' for 'Exist', 'N' for 'Not exist'). This GSoC project will focus on adding

the following 'N' metrics according to their priorities.

Module Detail Metric Type Status

Pool

State pgagroal_state gauge E

Pipeline mode pgagroal_pipeline_mode gauge N

Session pgagroal_session_time_seconds histogram E

Authentication

pgagroal_auth_user_success counter E

pgagroal_auth_user_bad_password counter E

pgagroal_auth_user_error counter E

Query
pgagroal_query_count counter N

pgagroal_query_time gauge N

Transaction
pgagroal_tx_count counter N

pgagroal_tx_time gauge N

Client wait time pgagroal_wait_time gauge N

Limit Limit pgagroal_limit gauge E

Server

State
pgagroal_server_error counter E

pgagroal_failed_servers gauge E

Database
connections

pgagroal_db_connections_bucket histogram N

pgagroal_db_connections gauge N

Database queries
pgagroal_db_queries_bucket histogram N

pgagroal_db_queries gauge N

Client
Wait client

pgagroal_client_wait gauge N

pgagroal_client_wait_bucket histogram N

Inuse client pgagroal_client_inuse gauge N

Connection
Connection result
counter

pgagroal_connection_error counter E

pgagroal_connection_kill counter E

pgagroal_connection_remove counter E

pgagroal_connection_timeout counter E

pgagroal_connection_return counter E

pgagroal_connection_invalid counter E

pgagroal_connection_get counter E

pgagroal_connection_idletimeout counter E

pgagroal_connection_flush counter E

pgagroal_connection_success counter E

Connection state

pgagroal_connection gauge E

pgagroal_active_connections gauge E

pgagroal_total_connections gauge E

pgagroal_max_connections counter E

Internal

Memory pgagroal_mem_alloc gauge N

Socket

pgagroal_self_sockets gauge N

pgagroal_conn_client_sockets gauge N

pgagroal_conn_server_sockets gauge N

Network Traffic
pgagroal_sent gauge N

pgagroal_receive gauge N

The 'N' metrics above have the following meanings.

Module Metric Note

Pool

pgagroal_pipeline_mode pipeline mode(perf, session, tx)

pgagroal_query_count counter of total query

pgagroal_query_time gauge of last query time

pgagroal_tx_count counter of total transaction

pgagroal_tx_time gauge of last transaction time

pgagroal_wait_time gauge of last wait time

Server

pgagroal_db_connections_bucket histogram of history connections count(per database)

pgagroal_db_connections gauge of current connections(per database)

pgagroal_db_queries_bucket histogram of history connections count(per database)

pgagroal_db_queries gauge of current connections(per database)

Client

pgagroal_client_wait gauge of current wait client(per database)

pgagroal_client_wait_bucket histogram of history wait client(per database)

pgagroal_client_inuse gauge of inuse client

Internal

pgagroal_mem_alloc gauge of memory allocation

pgagroal_self_sockets gauge of socket (main process, prometheus process, ...)

pgagroal_conn_client_sockets gauge of client socket

pgagroal_conn_server_sockets gauge of server socket

pgagroal_sent sent (to clients) bytes per second

pgagroal_receive receive (from clients) bytes per second

I noticed that the general steps for adding a new metric are below:

● Initialize the corresponding metric variable

● Add metric function to "prometheus.h" and implement it in "prometheus.c" by atomic

function in C

● Call the function at the appropriate place to increase or decrease the metric

● Append the new metric to "data" variable in "metrics_page" function to show it on metric

page

6. Grafana dashboard
After enough metrics have been added to Prometheus exporter, I will make a practical and

attractive Grafana dashboard. The dashboard is mainly divided into 6 parts: "Pool", "Limit",

"Server", "Client", "Connection" and "Internal". Each part consists of a suitable metric panel

which corresponds to a pgagroal metric. For example, the state panel "pgagroal state"

corresponds to the metric "pgagroal_state", and the bar chart "pgagroal_session_time_seconds"

corresponds to the metric "pgagroal_session_time_seconds".

A panel is shown below that is configured based on the currently available metrics:

7. Schedule

April 14 - May 18
Read and familiarize myself with the code. Especially the detail
of worker and message part.

May 18 - June 6

Learn more about pgagroal developer mode and try to link
current Prometheus metric to Grafana.

* Learn more about pgagroal community
* Learn more Grafana new version features
* Try to configure the relevant metric panel

June 7 - June 27 (3 weeks)

Implement internal metrics and configure its metric panel.

* Implement internal metrics such as memory, socket and
network metrics
* Configure relevant internal monitoring Grafana panel

June 28 - July 11(2 weeks)

Implement client metrics and configure its metric panel.

* Implement client metrics such as wait and in use client
counter metrics
* Configure relevant client monitoring Grafana panel

July 12 - July 17
First evaluation phase.

* Submit my evaluations of mentors

July 18 - August 1 (2 weeks)

Implement server metrics and configure its metric panel.

* Implement server metrics such as db connection and query
metrics
* Configure relevant server monitoring Grafana panel

August 2 - August 15 (2 weeks)

Implement pool metrics and configure its metric panel.

* Implement pool metrics such as pool mode, query and
transaction metrics
* Configure relevant pool monitoring Grafana panel

August 15 - August 24

Final submission phase.

* Submit all of code
* Submit project summaries
* Submit final evaluations of mentors

